
1

Fast Adaptive Least Trimmed Squares for Robust
Evaluation of Quality of Experience

Qianqian Xu, Ming Yan, and Yuan Yao

Abstract—Outlier detection is an integral part of robust
evaluation for crowdsourceable Quality of Experience (QoE)
and has attracted much attention in recent years. In QoE
for multimedia, outliers happen because of different test
conditions, human errors, abnormal variations in context, etc.
In this paper, we propose a simple yet effective algorithm for
outlier detection and robust QoE evaluation named iterative
Least Trimmed Squares (iLTS). The algorithm assigns binary
weights to samples, i.e., 0 or 1 indicating if a sample is an
outlier, then the outlier-trimmed subset least squares solutions
give robust ranking scores. An iterative optimization is carried
alternatively between updating weights and ranking scores
which converges to a local optimizer in finite steps. In our
test setting, iLTS is up to 190 times faster than LASSO-based
methods with a comparable performance. Moreover, a varied
version of this method shows adaptation in outlier detection,
which provides an automatic detection to determine whether a
data sample is an outlier without a priori knowledge about the
amount of the outliers. The effectiveness and efficiency of iLTS
are demonstrated on both simulated examples and real-world
applications. A Matlab package is provided to researchers
exploiting crowdsourcing paired comparison data for robust
ranking.

Index Terms—Quality of Experience (QoE); Crowdsourc-
ing; Paired Comparison; Outlier Detection; Iterative Least
Trimmed Squares; HodgeRank; Adaptive Outlier Pursuit

I. INTRODUCTION

In recent years, the quality of experience (QoE) no-

tion [1], [2] has become a major research theme within

the multimedia community, which can be described as

the assessment of a user’s subjective expectation, feeling,

perception, and satisfaction with respect to multimedia con-

tent. There are two main quality assessment methodologies,

namely subjective and objective assessment. Measuring and

ensuring good QoE of multimedia content is highly subjec-

tive in nature. The most commonly used subjective method

for quality measurement is the mean opinion score (MOS).

MOS is standardized in the ITU-T recommendations [3],

and it is defined as a numeric value going from 1 to 5

This work is supported in part by National Basic Research Program
of China (973 Program 2012CB825501), NSFC Grant 61071157, NSF
Grants DMS-1349855, DMS-1317602, and ARO MURI Grant W911NF-
09-1-0383.

Q. Xu is with BICMR, Peking University, Beijing 100871, China,
(email: xuqianqian@math.pku.edu.cn).

M. Yan is with Department of Mathematics, University of California,
Los Angeles, CA 90095, USA, (email: yanm@math.ucla.edu).

Y. Yao is with LMAM-LMP-LMEQF, School of Mathemati-
cal Sciences, Peking University, Beijing 100871, China, (email:
yuany@math.pku.edu.cn).

EDICS: SMR-HPM Perception and Quality Models for Images &
Video.

(i.e., bad to excellent). Although the MOS rating method

has a long history of pervasive use, it suffers from three

fundamental problems: (i) Unable to concretely define the

concept of scale; (ii) Dissimilar interpretations of the scale

among users; (iii) Difficult to verify whether a participant

gives false ratings either intentionally or carelessly [4].

Therefore, to address the problems above, we turn to

an alternative approach by leveraging the pairwise prefer-

ence information (i.e., pairwise comparison) obtained from

raters. Pairwise comparison has a long history, dating back

to the 18th century. It also has many nice properties.

For example, pairwise comparison is a relative measure

which is easier to conduct than absolute rating scores

and it helps reduce bias from the rating scale. In Netflix

dataset, the rating matrix is 99% incomplete, whereas the

paired comparison matrix is only 0.22% incomplete and

most entries are supported by many comparisons [5]. In

some cases such as tennis tournaments, even only pairwise

comparison is possible. However, since the number of pairs(
n
2

)
grows quadratically with the number of alternatives

under investigation, this approach may be an expensive and

time-consuming process in a laboratory setting.

To meet this challenge, with the advent of ubiquitous

Internet access, the crowdsourcing strategy arises to be

a promising alternative approach [6]. It provides an easy

and relatively inexpensive way to accomplish small and

simple tasks, such as Human Intelligence Tasks (HITs),

and to effectively utilize the wisdom of the commons to

solve complicated projects. Typically, in a crowdsourcing

scenario, each individual contributor is asked to solve a

part of a big problem, and a computational algorithm is

then developed to combine the partial solutions into an

integrated one. Because of the considerable size of the

Internet crowd, crowdsourcing could provide us efficient

and reliable QoE assessments taking advantage of the

power of the mass [2].

Methods for rating/ranking via pairwise comparison in

QoE evaluation in crowdsourcing scenario must address

a number of inherent difficulties including: (i) incomplete

and imbalanced data; (ii) streaming and online data; (iii)

outlier detection. To meet the first challenge, the work

in [7]–[9] propose randomized paired comparison methods

which accommodate incomplete and imbalanced data, a

general framework called HodgeRank on random graphs
(HRRG). It not only can deal with incomplete and im-

balanced data collected from crowdsourcing studies but

also derives the constraints on sampling complexity in

crowdsourcing experiment that the random selection must

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Fast Adaptive Least Trimmed Squares for Robust Evaluation of Quality
of Experience

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Los Angeles,Department of Mathematics,Los
Angeles,CA,90095

8. PERFORMING ORGANIZATION
REPORT NUMBER
CAM14-60

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Outlier detection is an integral part of robust evaluation for crowdsourceable Quality of Experience (QoE)
and has attracted much attention in recent years. In QoE for multimedia, outliers happen because of
different test conditions, human errors, abnormal variations in context, etc. In this paper, we propose a
simple yet effective algorithm for outlier detection and robust QoE evaluation named iterative Least
Trimmed Squares (iLTS). The algorithm assigns binary weights to samples, i.e., 0 or 1 indicating if a
sample is an outlier, then the outlier-trimmed subset least squares solutions give robust ranking scores. An
iterative optimization is carried alternatively between updating weights and ranking scores which
converges to a local optimizer in finite steps. In our test setting, iLTS is up to 190 times faster than
LASSO-based methods with a comparable performance. Moreover, a varied version of this method shows
adaptation in outlier detection which provides an automatic detection to determine whether a data sample
is an outlier without a priori knowledge about the amount of the outliers. The effectiveness and efficiency
of iLTS are demonstrated on both simulated examples and real-world applications. A Matlab package is
provided to researchers exploiting crowdsourcing paired comparison data for robust ranking.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

adhere to. Furthermore, a recent extension of HRRG is

introduced in [10], [11] to deal with streaming and online

data in crowdsourcing scenario in the second challenge,

providing the possibility of making assessment procedure

significantly faster than [8], [9] without deteriorating the

accuracy.

The third challenge of crowdsourcing QoE evaluations is

the fact that not every Internet user is trustworthy. In other

words, due to the lack of supervision when subjects perform

experiments in crowdsourcing, they may provide erroneous

responses perfunctorily, carelessly, or dishonestly [4]. Such

random decisions are useless and may deviate significantly

from other raters’ decisions. Such outliers have to be identi-

fied to achieve a robust QoE evaluation. In [4], Transitivity

Satisfaction Rate (TSR), which checks all the intransitive

triangles, e.g., A � B � C � A, is proposed for outlier

detection. TSR is defined as the number of judgment triplets

(e.g., the three preference relations among A, B, and C)

satisfying transitivity divided by the total number of triplets

where transitivity may apply; thus, the value of TSR is

always between 0 and 1. If a participant’s judgments are

consistent throughout all the rounds of an experiment, TSR

will be 1; otherwise it will be smaller than 1. In this

way, we can identify and discard noisy data provided by

unreliable assessors. However, TSR can only be applied

for complete and balanced paired comparison data. When

the paired data are incomplete and imblanced, i.e., having

missing edges, the question of how to detect the noisy

pairs remains open. The work in [12] attacks this problem

and formulates the outlier detection as a LASSO problem

based on sparse approximations of cyclic ranking projection

of paired comparison data in Hodge decomposition. Reg-

ularization paths of the LASSO problem could provide an

order on samples tending to be outliers. However, as every

sample contributes an outlier indicator variable, solving

such a large scale LASSO is expensive, not mentioning

the additional cost on model selection via cross-validation,

AIC (Akaike Information Criterion), or BIC (Bayesian

Information Criterion) which may not even work well in

outlier detection [13].

In this paper, we propose a simple yet effective algorithm

for outlier detection and robust ranking via iterative Least

Trimmed Squares (iLTS). This new method is fast, about

190 times faster than LASSO in our test, and adaptive,

which could purify data automatically without a priori
knowledge on the amount of outliers. In our experimental

studies on both simulated and real-world data, the method

provide comparable results to LASSO in both outlier

detection and robust evaluation scores. Therefore it is a

promising tool for crowdsourcing robust QoE evaluation.

The remainder of this paper is organized as follows.

Section II contains a review of related work. Then we

describe the proposed framework in Section III, which

establishes some fast and adaptive algorithms based on

iterative least trimmed squares. Detailed experiments are

presented in Section IV, followed by the conclusions in

Section V.

II. RELATED WORK

A. QoE Evaluation

QoE of multimedia content can be divided into two

categories: subjective assessment and objective assessment.

In subjective viewing tests, stimuli are shown to a group of

viewers, and then their opinions are recorded and averaged

to evaluate the quality of the stimuli. This process is labor-

intensive and time-consuming. On the contrary, objective

assessment predicts the perceived quality automatically and

intelligently by building objective quality models (see [14],

a survey paper, and its references). Objective methods are

indeed convenient to use, whereas it can not capture the

true feelings of users’ experiences. Therefore, to obtain

factual QoE evaluation results, subjective methods are still

required, even though the cost is higher.

A variety of approaches can be employed to conduct-

ing subjective tests, among which mean opinion score

(MOS) [3] and paired comparison are the two most popular

ones. In the MOS test, individuals are asked to specify

a rating from “Bad” to “Excellent” (e.g., Bad-1, Poor-2,

Fair-3, Good-4, and Excellent-5) to grade the quality of

a stimulus; while in paired comparison approach, raters

are only asked to make intuitive comparative judgements

instead of mapping their perception on a categorical or

numerical scale. Among these there may be tradeoffs in

the amount of information the preference label contains and

the bias associated with obtaining the label. For example,

while a graded relevance judgment on a five-point scale

may contain more information than a binary judgment,

raters may also make more errors due to the complexity

of assigning finer-grained judgments. For this reason, the

paired comparison method is currently gaining growing

attention, which promises assessments that are easier and

faster to obtain, less demanding task for raters, and yields

more reliable data with less personal scale bias in practice.

A shortcoming of paired comparison is that it has more

expensive sampling complexity than the MOS test. There-

fore, how to make paired comparison method efficient and

applicable in reality becomes a hot topic in recent years.

B. Crowdsourcing

Crowdsourcing can be considered as a further develop-

ment of the outsourcing principle, where tasks are submit-

ted to an undefined and large group of people or community

(a “crowd”) in the form of an open call, instead of a

designated employee or subcontractor [6]. Most employers

submitting tasks to an anonymous crowd use mediators

which maintain the crowd and manage the employers

campaigns. These mediators are called crowdsourcing plat-

forms. Among various crowdsourcing platforms, Amazon

Mechanical Turk (MTurk) is probably the most popular one,

which provides a marketplace for a variety of tasks, and

anyone who wishes to seek help from the Internet crowd

can post their task requests on the website. Besides, Inno-

Centive, CrowdFlower, CrowdRank, and AllOurIdeas also

bring the crowdsourcing revolution to various application

fields.

XU et al.: ILTS FOR OUTLIER DETECTION 3

With the help of these platforms, researchers can seek

help from the Internet crowd to conduct user studies on

document relevance [15], document evaluation [16], image

annotation [17], [18], music emotion recognition [19],

affection mining in computer games [20], together with

some studies on QoE evaluation [4], [8]–[10], [21], [22],

etc. However, a major challenge of crowdsourcing QoE

evaluation is that not every Internet user is trustworthy.

That is, some raters try to maximize their received payment

while minimizing their own effort and therefore submit low

quality work to obtain such a goal. Therefore, it is necessary

to detect unreliable inputs and filter them out since they

may cause inaccuracy in the estimation of QoE scores. For

example, with complete and balanced data, TSR is proposed

in [4] to measure the reliability of the participants’ judg-

ments. In contrast, the outlier detection method proposed

in this paper is a general and simple one which could deal

with not only complete and balanced paired comparison

data, but also incomplete and imbalanced data.

C. Statistical Ranking

Statistical preference aggregation, in particular ranking

or rating from pairwise comparisons, is a classical problem

which can be traced back to the 18th century. This subject

area has been widely studied in various fields including

the social choice or voting theory in Economics [23],

[24], Psychology [25], [26], Statistics [27], [28], Computer

Vision [29]–[31], Information Retrieval [32], [33], Machine

Learning [34], [35], and others [36]–[38].

In particular, learning to rank trains a statistical model

for ranking tasks. Popular approaches for learning to rank

with pairwise comparisons include Active Ranking [39],

[40], IRSVM [41], RankNet [42], and LambdaRank [43].

However, since learning to rank requires a feature vector

representation of the items to be ranked, they can not be

directly applied to crowdsourced QoE evaluation.

In crowdsourced QoE evaluation, the purpose is not to

predict the ranking based on features, but to aggregate a

global ranking from the crowdsourcing pairwise prefer-

ences. Various methods have been proposed for crowd-

sourceable pairwise comparison ranking. In [44], it pro-

poses a Bayesian framework to actively select pairwise

comparison queries, and effectively combine the pairwise

comparisons acquired by crowdsourcing to form a single

ranking list. In [45], it infers the preferences from crowd-

sourced pairwise comparison with matrix completion and

compares it to collaborative filtering. In [46], it develops an

iterative ranking aggregation algorithm from pairwise com-

parisons using Bradley-Terry model. Besides, there are two

famous frameworks for QoE evaluation in Crowdsourcing:

the Qudrant of Euphoria by [47] and QualityCrowd by [48].

D. HodgeRank and Random Graphs

HodgeRank, as an application of combinatorial Hodge

theory to the preference or rank aggregation problem from

pairwise comparison data, was first introduced in [5],

inspiring a series of studies in statistical ranking [49]–[51]

and game theory [52], in addition to traditional applications

in fluid mechanics [53] and computer vision [31], [54], etc.

It is a general framework to decompose paired compar-

ison data on graphs, possibly imbalanced (where different

video pairs may receive different number of comparisons)

and incomplete (where every participant may only give

partial comparisons), into three orthogonal components. In

these components HodgeRank not only provides us a mean

to determine a global ranking from paired comparison data

under various statistical models (e.g., Uniform, Thurstone-

Mosteller, Bradley-Terry, and Angular Transform), but also

measures the inconsistency of the global ranking obtained.

The inconsistency shows the validity of the ranking ob-

tained and can be further studied in terms of its geometric

scale, namely whether the inconsistency in the ranking

data arises locally or globally. Local inconsistency can

be fully characterized by triangular cycles, while global

inconsistency involves cycles consisting nodes more than

three, which may arise due to data incompleteness and once

presented with a large component indicates some serious

conflicts in ranking data. However through random graphs,

we can efficiently control global inconsistency.

Random graph is a graph generated by some random

process. It starts with a set of n vertices and adds edges be-

tween them at random. Different random graph models pro-

duce different probability distributions on graphs. Among

various random graphs (i.e., the Erdös-Rényi random

graph [55], random regular graph [56], preferential attach-

ment random graph [57], small world random graph [58],

and geometric random graph [59]), the most commonly

studied one is the Erdös-Rényi random graph [55]. It can

be viewed as a random sampling process of pairs or edges

independently and identically distributed (I.I.D.), and thus

is well suited to crowdsourcing scenario where raters enter

the test system in a dynamic and random way. In [8], [9], a

random design principle based on the Erdös-Rényi random

graph theory is investigated to conduct crowdsourcing tests.

It shows that for a large Erdös-Rényi random graph G(n, p)
with n nodes and every edge sampled with probability p,

p � n−1 log n is necessary to ensure the graph is connected

and the inference of a global ranking is thus possible. To

avoid global inconsistency from Hodge decomposition, it

suffices to have larger sampling rates at p � n−1/2. In this

paper, we also focus on this simple yet powerful random

graph model particularly in the scenarios where outliers are

present.

E. Outlier Detection

Outliers are typically defined to be data samples that

have unusual deviation from the remaining data. Hawkins

formally defined in [60] the concept of an outlier as follows:

“An outlier is an observation which deviates so much from

the other observations as to arouse suspicions that it was

generated by a different mechanism.” Outliers are rare

events, but once they have occurred, they may lead to a

large instability of models estimated from the data. Statisti-

cal approaches were the earliest algorithms used for outlier

4

detection, such as distribution-based, depth-based, distance-

based, density-based, and clustering method [61]. More

recently, this problem has been studied quite extensively

by the computer science community. In subjective quality

evaluation in multimedia, there are several reasons why

some user ratings are not reliable and need to be filtered

out in order to avoid false QoE results [62]: the test sub-

jects may not understand the test and the test instructions

properly; wrong test conditions may occur due to errors in

the web-based test application or due to incompatibilities

of the test application with the subject’s hard- and software;

or the subjects do the test in a hurry resulting into sloppy

work and unreliable results. Numerous efforts have been

made in order to detect outliers and improve the quality

of the results. In [12], it formulates the outlier detection

as a LASSO problem based on sparse approximations of

cyclic ranking projection of paired comparison data. Then

regularization paths of the LASSO problem could provide

us an order on samples tending to be outliers. Such an

approach is inspired by Huber’s celebrated work on robust

regression [63]. On the other hand, recently [64] proposed

a fast algorithm called adaptive outlier pursuit (AOP) for

random-valued impulse noise removal, which has been

applied to many applications in image and signal processing

such as robust 1-bit compressive sensing [65], robust binary

fused compressive sensing [66], and robust low rank matrix

completion [67]. Such a work is based on iterative least

trimmed squares. In this paper, we develop applications of

AOP in the scenario of robust QoE evaluation.

III. ITERATIVE LEAST TRIMMED SQUARES

In this section, we propose a method for automatic outlier

detection without any priori information about the number

of outliers. It adaptively detects outliers and obtains robust

QoE evaluation with the outlier removal. Brief introductions

on robust ranking are provided before the algorithm is

described.

A. The Problem of Robust Ranking

Assume that there are m participants and n items to be

ranked. Let Y α
ij denote the degree that participant α prefers

item i to item j. Without loss of generality, one assumes

that Y α
ij > 0 if α prefers i to j and Y α

ij < 0 otherwise.

In addition, we assume that the paired comparison data is

skew-symmetric for each α, i.e., Y α
ij = −Y α

ji . The strategy

used in QoE evaluation can be dichotomous choice or a k-

point Likert scale with k ≥ 3. In this paper, we shall focus

on the dichotomous choice, in which Y α
ij can be taken as

{±1} only. However, the theory can be applied to more

general cases with k-point Likert scales.

In subjective multimedia assessment, it is natural to

assume

Y α
ij = sign(s∗i − s∗j + Zα

ij), (1)

where sign(·) = ±1 measures the sign of the value, s∗ =
{s∗1, · · · , s∗n} ∈ R

n is the true scaling score on n items

and Zα
ij is the noise. In practice the global rating score

s = {s1, · · · , sn} can be obtained by solving the following

optimization problem

minimize
s∈Rn

∑
i �=j,α

Wα
ijL(si − sj , Y

α
ij), (2)

where L(x, y) : R×R → R is a loss function depending on

the distribution of the noise, Wα
ij denotes the importance

weights (e.g., number of paired comparisons) on {i, j}
made by rater α, and si (or sj) represents the global ranking

score of item i (or j). A geometric interpretation of (2) is

to look for some potential function s : [n] → R whose

gradient captures main variations in paired comparison data

Y .

If the noise is independent and identically distributed

(i.i.d.), the Gauss-Markov theorem tells us that the unbiased

estimator with minimal variance is obtained by the choice

of square loss L(x, y) = (x − y)2. In this case the global

rating score s satisfies the normal equation:

Ls = b, (3)

where L = D − A is the unnormalized graph Laplacian

defined by Aij =
∑

α Wα
ij and D is the diagonal matrix

with Dii =
∑

j,α Wα
ij , b is the divergence flow defined

by bi =
∑

j,α Wα
ijY

α
ij . Such an algorithm has been used

in [8]–[10] to derive scaling scores in subjective multimedia

assessment. Via combinatorial Hodge decomposition [5],

[9], the residue of the least squares solution rαij = Y α
ij −

si − sj can be interpreted as cyclic rankings on n items.

However, not all comparisons are trustworthy and there

may be sparse outliers due to different test conditions,

human errors, or abnormal variations in context. Putting

in a mathematical way, here we consider

Zα
ij = Eα

ij +Nα
ij , (4)

where outlier Eα
ij has a much larger magnitude than Nα

ij

and is sparse as zero with probability p ∈ (0, 1]. When

sparse outliers exist, (2) becomes unstable and may give

bad estimation. If the outliers can be detected and removed,

then the solution from least squares on the remaining

comparisons is more accurate and gives a better estimation.

In [12], the famous Huber’s loss [63] is chosen for robust

ranking as L(si − xj − Y α
ij) = ρλ(si − sj − Y α

ij) where

ρλ(x) =

{
x2/2, if |x| ≤ λ
λ|x| − λ2/2, if |x| > λ.

When |si − sj − Y α
ij | < λ, the comparison is regarded as

a “good” one with Gaussian noise and L2-norm penalty is

used on the residual. Otherwise, it is regarded as a “bad”

one contaminated by outliers and one uses L1-norm penalty

which is less sensitive to the amount of deviation. Assume

that the importance weights are the same (Wα
ij = 1). In this

case, (2) is equivalent to the following LASSO problem,

often called Huber-LASSO,

minimize
s∈Rn,E

∑
i,j,α

1

2
(si − sj − Y α

ij + Eα
ij)

2 + λ‖E‖1. (5)

A simple geometric interpretation from Hodge decomposi-

tion [12] is that the outlier E is a sparse approximation of

XU et al.: ILTS FOR OUTLIER DETECTION 5

cyclic ranking projection which summarizes the conflicts of

interests among voters.

There are a couple of issues in such a Huber-LASSO

approach [12]: 1) the LASSO estimator is well-known to

be biased; 2) the computational cost of Huber-LASSO path

is expensive as every sample is associated with an outlier

indicator variable Eα
ij . To solve (1), one typically exploits

Huber-LASSO in outlier detection, followed by a subset

least squares with only non-outlier samples. This is often

called Least Trimmed Squares (LTS) in robust statistics

[68]. In the remaining of this section, we will see some

iterative versions of LTS leads to fast algorithms for robust

ranking which automatically finds the number of outliers

in practice.

B. Least Trimmed Squares

Given K as the number of outliers, the least trimmed

squares model can be written as⎧⎨⎩
minimize
s∈Rn,Λ

∑
i,j,α

Λα
ij(si − sj − Y α

ij)
2,

subject to
∑
i,j,α

(1− Λα
ij) ≤ K,Λα

ij ∈ {0, 1}, (6)

where Λα
ij is used to denote the outlier as follows:

Λα
ij =

{
0, if Y α

ij is a outlier,
1, otherwise.

(7)

Remark 1: When the importance weights are not the

same, we can modify the problem into⎧⎨⎩
minimize
s∈Rn,Λ

∑
i,j,α

Λα
ijW

α
ij(si − sj − Y α

ij)
2,

subject to
∑
i,j,α

(1− Λα
ij)W

α
ij ≤ K,Λα

ij ∈ {0, 1}.

Let

F (s,Λ) =
∑
i,j,α

Λα
ij(si − sj − Y α

ij)
2

+ ι{Λ:
∑

i,j,α(1−Λα
ij)≤K,Λα

ij∈{0,1}}

where ι{Λ:
∑

i,j,α(1−Λα
ij)≤K,Λα

ij∈{0,1}} is the indicator func-

tion which equals to zero when both
∑

i,j,α(1−Λα
ij) ≤ K

and Λα
ij ∈ {0, 1} are satisfied and +∞ otherwise, then

problem (6) is equivalent to

minimize
s∈Rn,Λ

F (s,Λ). (8)

This is a nonconvex optimization problem. However one

can split the minimization over Λ and s into two steps. For

solving the problem in s with Λ fixed, it is a convex least

squares problem, and the problem of finding Λ with s fixed

can be solved in one step. These two subproblems are:

1) Fix Λ and update s. We need to solve a least squares

problem with the comparisons that are detected to be

outliers removed.

2) Fix s and update Λ. This time we are solving⎧⎨⎩
minimize

Λ

∑
i,j,α

Λα
ij(si − sj − Y α

ij)
2,

subject to
∑
i,j,α

(1− Λα
ij) ≤ K,Λα

ij ∈ {0, 1}. (9)

This problem is to choose K elements with largest sum-

mation from the set {(si − sj − Y α
ij)

2}. Denoting τ as the

value of the Kth largest term in that set, Λ can then be

calculated by

Λα
ij =

{
1, if (si − sj − Y α

ij)
2 < τ,

0, otherwise.
(10)

If the Kth and (K+1)th largest terms have the same value,

then we can choose any Λ such that
∑
i,j,α

(1 − Λα
ij) ≤ K

and

min
i,j,α,Λα

ij=0
(si − sj − Y α

ij)
2 ≥ max

i,j,α,Λα
ij=1

(si − sj − Y α
ij)

2.

(11)

Such a procedure is described precisely in the following

algorithm.

Algorithm 1 Iterative Least Trimmed Squares with K

Input: {Y α
ij }, K ≥ 0.

Initialization: k = 0, Λα
ij = 1.

for k = 1, 2, · · · do
Update sk by solving the least squares problem (2)

using only the comparisons with Λα
ij = 1.

Update Λk from (10) or (11) with one different from

previous ones.

end for
return s.

Let E(s) = minΛ F (s,Λ) and we have the following

theorem about the convergence of Algorithm 1.

Theorem 1: Algorithm 1 will converge in finite steps and

the output s is a local minimum point of E(s).
Proof: From the algorithm, we have

F (sk,Λk) ≥ F (sk+1,Λk) ≥ F (sk+1,Λk+1). (12)

Additionally there are only finite number of Λ’s. Therefore

the algorithm will stop in finite steps if the s-subproblem

is solved exactly. Assume that we have F (sk,Λk) =
F (sk+1,Λk+1). Thus

F (sk,Λk) = F (sk+1,Λk) = min
s

F (s,Λk),

F (sk,Λk) = min
Λ

F (sk,Λ) = E(sk),

which means that (sk,Λk) is a coordinatewise minimum

point of F (s,Λ). We will show that sk is a local minimum

point of E(s).
Let τk be the Kth largest term of {(ski − skj − Y α

ij)
2},

and define Λ+ = {(i, j, α) : (ski − skj − Y α
ij)

2 > τk} and

Λ− = {(i, j, α) : (ski −skj −Y α
ij)

2 < τk}. Then we can find

ε > 0 such that when ‖s − sk‖2 < ε, we have (si − sj −
Y α
ij)

2 > τ for all (i, j, α) ∈ Λ+ and (si − sj − Y α
ij)

2 < τ
for all (i, j, α) ∈ Λ−, where τ is the Kth largest term

of {(si − sj − Y α
ij)

2}. Notice that E(s) = minΛ F (s,Λ),
then there is Λ̄ such that E(s) = F (s, Λ̄), with Λ̄α

ij > 0
when (i, j, α) ∈ Λ+ and Λ̄α

ij < 0 when (i, j, α) ∈ Λ−.

Thus E(sk) = F (sk, Λ̄). In addition, we have F (sk, Λ̄) ≤

6

F (s, Λ̄) because all Λ’s satisfying (11) for sk are chosen

before the algorithm stops. Hence, E(sk) = F (sk, Λ̄) ≤
F (s, Λ̄) = E(s), and sk is a local minimizer of E(s).

C. Adaptive Least Trimmed Squares

If the number of outlier K is given, Algorithm 1 can

be used to detect the outliers and improve the performance

of least squares. However, in practice, the exact number of

outliers K may be unknown. If K is underestimated, some

remaining outliers will still damage the performance. On

the other hand, if K is overestimated, too many outliers

are removed, and the resulting data is not enough or too

biased for QoE evaluation. For a few applications such as

impulse noise removal, the number of outliers can be esti-

mated accurately, while it is difficult for many applications

including crowdsourceable QoE evaluation. Therefore, a

outlier detection method which can automatically estimate

the number of outliers is strongly needed.

In the following, we propose a method to estimate the

number of outliers automatically. At first, when the number

of outliers is unknown, we can use least squares to find an

estimate of s, then the number of outliers according to this

s can be calculated, i.e., the total number of comparisons

with wrong directions (Y α
ij has different sign with si − sj)

denoted as K̃. Because this s is not accurate and K̃ is an

overestimation of K. We can underestimate the number of

outliers as K˜ = β1K̃ (β1 ∈ (0, 1)), With this underestimate

K˜ , we can solve the least squares problem after the K˜
comparison that are considered to be outliers removed

and obtain an improved s. Then we have to increase the

estimation of the number K˜ by β2 (β2 ∈ (1,∞)), but

the number can not be larger than K̃, the total number

of comparisons mismatching the current score, because

there are only K̃ outliers with the current score. Therefore

the update of K˜ is just K˜ = min(
β2K˜ �, K̃) where
x�
(�x) is the greatest (smallest) integer no larger (less) than

x ∈ R
+. The weight Λα

ij for the new least trimmed squares

problem is binary (0 or 1) and determined by K˜ largest

outliers. Iterations go on until a fixed point is met where

K˜ = K̃ gives the estimated number of outliers. Algorithm

2 describes such a procedure precisely, which is called

here Iterative Least Trimmed Squares without K or simply

Adaptive Least Trimmed Squares.

Remark 2: There are only two parameters to choose and

they are easy to set. They are chosen according to following

inequalities β1 < 1 < β2 (β1 = 0.75 and β2 = 1.03 are

fixed in our numerical experiments). β1 has to be small to

make sure that the first estimation is underestimated. Then

the underestimate K˜ is increasing geometrically with rate

β2 and β2 can not be too large, because we do not want to

increase the underestimate too much.

Remark 3: The algorithm is able to detect most of the

outliers in our experiments with a maximum iteration

number Miter = 30. However, there may be mistakes in

the detection, and these mistakes happen mostly between

two successive items in the order. Therefore, we can add

one step to just compare every pair of two successive items

Algorithm 2 Adaptive Least Trimmed Squares

Input: {Y α
ij }, Miter > 0, β1 < 1, β2 > 1.

Initialization: k = 0, Λα
i,j(k) = 1, K˜ k = 0.

for k = 1, · · · , Miter do
Update sk with least squares (2) using only the

comparisons with Λα
ij(k − 1) = 1.

Let K̃k be the total number of comparisons with

wrong directions, i.e., Y α
ij has different sign with ski −skj .

K˜ k =

{

β1K̃k�, if k = 1;

min(
β2K˜ k−1�, K̃k), otherwise,
(13)

If K˜ k = K̃k, break.

Update Λ(k) using (10) or (11) with K = K˜ k.

end for
Find ŝ with least squares (2) using only the samples with

Λα
ij(k) = 1.

return ŝ, K̂ = K̃k.

and make the correction on the detection, i.e., if item i is

ranking above j but the number of people choosing item i
over j is less than the number of people choosing j over

i, we can remove those choosing j over i and keep those

choosing i over j.
The algorithm always stops in finite steps even without

a bound on “Miter”, due to the following Lemma.
Lemma 1: If K̃k ≤ C for k ≥ k0, Algorithm 2 will stop

in no more than k∗ steps, where

k∗ =

⌈
logC − log β1K̃1

log β2

⌉
.

Proof: It follows from the fact that K˜ k is a monotonic

increasing sequence for β2 > 1 and bounded K̃k.
However such a result only ensures that the algorithm

stops at an overestimate on the correct number of outliers.

The following theorem presents a stability condition such

that Algorithm 2 returns the correct number of outliers.
Theorem 2: Assume that for k ≥ k0, every sample sub-

set supp(Λ(k − 1)) gives an order-consistent least squares

estimator sk, i.e., sk induces the same ranking order as the

true score s∗, then Algorithm 2 returns the correct number

of outliers in K̂.
Proof: As sk is an order-consistent solution of (2), by

definition K̃k gives the correct number of outliers, say K∗.

It actually holds for all k ≥ k0, that K̃k ≡ K∗. From

Lemma 1 the claim follows.
Note that Theorem 2 does not require supp(Λ(k − 1))

to correctly identify the outliers, but just stable estimator

sk which does not change the order from s∗. In practice,

this might not be satisfied easily; but as we shall see in the

next section with experiments, Algorithm 2 typically returns

stable estimators which slightly deviate in local ranking

order.

IV. EXPERIMENTS

A key question in the outlier detection community is how

to evaluate the effectiveness of outlier detection algorithms

XU et al.: ILTS FOR OUTLIER DETECTION 7

TABLE I: Precisions for simulated data via iLTS, 100 times repeat.

Precision (sd) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 0.997(0.022) 0.993(0.023) 0.993(0.015) 0.978(0.025) 0.964(0.034) 0.942(0.037) 0.893(0.053) 0.825(0.064) 0.670(0.078) 0.505(0.097)

SN=2000 1.000(0) 1.000(0) 0.998(0.009) 0.999(0.005) 0.995(0.010) 0.976(0.023) 0.947(0.034) 0.882(0.051) 0.751(0.067) 0.503(0.089)

SN=3000 1.000(0) 1.000(0) 1.000(0) 0.999(0.002) 0.998(0.005) 0.991(0.013) 0.970(0.024) 0.926(0.036) 0.811(0.060) 0.502(0.090)

SN=4000 1.000(0) 1.000(0) 1.000(0) 1.000(0) 0.999(0.002) 0.995(0.010) 0.988(0.015) 0.945(0.031) 0.829(0.059) 0.498(0.098)

SN=5000 1.000(0) 1.000(0) 1.000(0) 1.000(0) 1.000(0) 0.998(0.006) 0.990(0.015) 0.959(0.027) 0.847(0.052) 0.499(0.101)

TABLE II: Precisions for simulated data via LASSO, 100 times repeat.

Precision (sd) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 0.972(0.033) 0.962(0.030) 0.958(0.025) 0.931(0.028) 0.923(0.028) 0.905(0.032) 0.863(0.040) 0.805(0.058) 0.698(0.067) 0.513(0.085)

SN=2000 0.996(0.011) 0.990(0.014) 0.984(0.016) 0.970(0.022) 0.960(0.017) 0.942(0.022) 0.914(0.031) 0.860(0.044) 0.750(0.056) 0.516(0.084)

SN=3000 0.999(0.005) 0.997(0.008) 0.992(0.012) 0.981(0.016) 0.970(0.016) 0.957(0.020) 0.929(0.022) 0.887(0.031) 0.796(0.050) 0.523(0.083)

SN=4000 0.999(0.001) 0.999(0.005) 0.996(0.009) 0.990(0.011) 0.980(0.015) 0.970(0.016) 0.946(0.019) 0.909(0.027) 0.818(0.048) 0.518(0.093)

SN=5000 0.999(0.002) 1.000(0) 0.998(0.006) 0.992(0.011) 0.985(0.015) 0.972(0.016) 0.955(0.019) 0.917(0.027) 0.837(0.038) 0.525(0.088)

TABLE III: Recalls for simulated data via iLTS, 100 times repeat.

Recall (sd) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 1.000(0) 0.994(0.015) 0.994(0.010) 0.981(0.020) 0.969(0.024) 0.943(0.036) 0.885(0.054) 0.805(0.066) 0.653(0.080) 0.438(0.093)

SN=2000 1.000(0) 1.000(0) 0.999(0.006) 0.999(0.005) 0.994(0.011) 0.978(0.019) 0.947(0.032) 0.879(0.052) 0.727(0.071) 0.456(0.087)

SN=3000 1.000(0) 1.000(0) 1.000(0) 0.999(0.002) 0.998(0.005) 0.991(0.012) 0.970(0.023) 0.925(0.037) 0.797(0.062) 0.464(0.089)

SN=4000 1.000(0) 1.000(0) 1.000(0) 1.000(0) 0.999(0.003) 0.996(0.007) 0.988(0.014) 0.946(0.030) 0.821(0.060) 0.466(0.098)

SN=5000 1.000(0) 1.000(0) 1.000(0) 1.000(0) 1.000(0) 0.998(0.006) 0.991(0.013) 0.962(0.025) 0.842(0.052) 0.470(0.100)

TABLE IV: Recalls for simulated data via LASSO, 100 times repeat.

Recall (sd) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 0.972(0.033) 0.962(0.030) 0.958(0.025) 0.931(0.028) 0.923(0.028) 0.905(0.032) 0.863(0.040) 0.805(0.058) 0.698(0.067) 0.513(0.085)

SN=2000 0.996(0.011) 0.990(0.014) 0.984(0.016) 0.970(0.022) 0.960(0.017) 0.942(0.022) 0.914(0.031) 0.860(0.044) 0.750(0.056) 0.518(0.084)

SN=3000 0.999(0.005) 0.997(0.008) 0.992(0.012) 0.981(0.016) 0.970(0.016) 0.957(0.020) 0.929(0.022) 0.887(0.031) 0.796(0.050) 0.523(0.083)

SN=4000 0.999(0.001) 0.999(0.005) 0.996(0.009) 0.990(0.011) 0.980(0.015) 0.970(0.016) 0.946(0.019) 0.909(0.027) 0.818(0.048) 0.518(0.093)

SN=5000 0.999(0.002) 1.000(0) 0.998(0.006) 0.992(0.011) 0.985(0.015) 0.972(0.016) 0.955(0.019) 0.917(0.027) 0.837(0.038) 0.525(0.088)

TABLE V: F1 scores for simulated data via iLTS, 100 times repeat.

F1 (sd) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 0.998(0.012) 0.994(0.019) 0.994(0.012) 0.980(0.022) 0.966(0.028) 0.943(0.036) 0.889(0.053) 0.815(0.064) 0.675(0.079) 0.469(0.095)

SN=2000 1.000(0) 1.000(0) 0.999(0.007) 0.999(0.005) 0.994(0.010) 0.977(0.021) 0.947(0.033) 0.880(0.051) 0.739(0.069) 0.478(0.088)

SN=3000 1.000(0) 1.000(0) 1.000(0) 0.999(0.002) 0.998(0.005) 0.991(0.012) 0.970(0.023) 0.925(0.036) 0.804(0.061) 0.482(0.089)

SN=4000 1.000(0) 1.000(0) 1.000(0) 1.000(0) 0.999(0.003) 0.996(0.009) 0.988(0.014) 0.946(0.030) 0.825(0.059) 0.482(0.098)

SN=5000 1.000(0) 1.000(0) 1.000(0) 1.000(0) 1.000(0) 0.998(0.006) 0.990(0.014) 0.960(0.026) 0.845(0.052) 0.484(0.101)

TABLE VI: F1 scores for simulated data via LASSO, 100 times repeat.

F1 (sd) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 0.972(0.033) 0.962(0.030) 0.958(0.025) 0.931(0.028) 0.923(0.028) 0.905(0.032) 0.863(0.040) 0.805(0.058) 0.698(0.067) 0.513(0.085)

SN=2000 0.996(0.011) 0.990(0.014) 0.984(0.016) 0.970(0.022) 0.960(0.017) 0.942(0.022) 0.914(0.031) 0.860(0.044) 0.750(0.056) 0.516(0.084)

SN=3000 0.999(0.005) 0.997(0.008) 0.992(0.012) 0.981(0.016) 0.970(0.016) 0.957(0.020) 0.929(0.022) 0.887(0.031) 0.796(0.050) 0.523(0.083)

SN=4000 0.999(0.001) 0.999(0.005) 0.996(0.009) 0.990(0.011) 0.980(0.015) 0.970(0.016) 0.946(0.019) 0.909(0.027) 0.818(0.048) 0.518(0.093)

SN=5000 0.999(0.002) 1.000(0) 0.998(0.006) 0.992(0.011) 0.985(0.015) 0.972(0.016) 0.955(0.019) 0.917(0.027) 0.837(0.038) 0.525(0.088)

8

TABLE VII: Computing time for 100 runs in total on simulated data via iLTS.

time (second) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 4.38 3.92 3.65 3.58 3.54 3.61 3.71 3.75 3.66 3.73

SN=2000 6.54 5.93 5.62 5.32 5.29 5.33 5.28 5.19 5.13 5.15

SN=3000 8.86 8.14 7.62 7.31 7.11 6.98 7.05 7.07 7.15 7.02

SN=4000 11.01 10.32 9.67 9.37 8.67 8.87 7.82 8.51 8.78 8.81

SN=5000 13.23 12.36 12.14 11.73 12.04 11.59 11.03 10.82 10.79 10.49

TABLE VIII: Computing time for 100 runs in total on simulated data via LASSO.

time (second) OP=5% OP=10% OP=15% OP=20% OP=25% OP=30% OP=35% OP=40% OP=45% OP=50%

SN=1000 625.14 673.75 690.31 625.85 595.65 636.35 592.65 595.15 638.65 560.71

SN=2000 905.04 973.64 938.37 1017.06 791.37 887.72 855.61 825.98 818.99 806.25

SN=3000 1116.23 1167.45 1184.89 1127.83 1118.26 1032.88 916.89 952.67 822.35 929.75

SN=4000 1158.67 1256.82 1305.28 1227.76 1161.78 1087.81 1016.97 1035.82 948.75 1011.45

SN=5000 1288.02 1375.14 1368.75 1256.89 1228.56 1104.32 992.46 976.06 1034.12 1077.93

when the ground-truth outliers are not available. In this

section, we show the effectiveness of the proposed method

on simulated data with known ground truth outliers and on

real-world datasets without ground truth outliers. The codes

for the numerical experiments and the real-world datasets

can be downloaded from https://code.google.com/p/irls/.

A. Simulated data
The simulated data is constructed as follows. A random

total order on n candidates is created as the ground-truth or-

der. Then we add paired comparison edges (i, j) randomly

with preference directions following the ground-truth order.

We simulate the outliers by randomly choosing a portion

of the comparison edges and reversing them in preference

direction. A paired comparison graph with outliers, possibly

incomplete and imbalanced, is constructed.
Here we choose n = 16, which is consistent with the

real-world datasets, and make the following definitions for

the experimental parameters. The total number of paired

comparisons occurred on this graph is SN (Sample Num-

ber), and the number of outliers is ON (Outlier Number).

Then the outlier percentage OP can be obtained as ON/SN.
Most outlier detection algorithms adopt a tuning parame-

ter (t) in order to select different amount of data samples as

outliers [12] and the number of outliers detected changes as

t changes. If t is picked too restrictively, then the algorithm

will miss true outlier points (false negatives). On the other

hand, if the algorithm declares too many data samples as

outliers, then it will lead to too many false positives. This

tradeoff can be measured in terms of precision and recall,
which are commonly used for measuring the effectiveness

of outlier detection methods. Specifically, the precision is

defined as the percentage of reported outliers, which truly

turn out to be outliers; and the recall is correspondingly

defined as the percentage of ground-truth outliers, which

have been reported as outliers.
The proposed method iLTS (Algorithm 2) is compared

with LASSO [12] for outlier detection on the simulated

data. For the ease of comparison, here we should tell

LASSO in advance the exact percentage of outliers exist

in the dataset.

The precisions, recalls and F1-scores with standard

deviations (sd) over 100 runs for these two methods

on different choices of SN and ON are shown in Ta-

bles I, II, III, IV, V, and VI. F1-score is a combined

measure that assesses the precision/recall tradeoff, which

reaches its best value at 1 and worst score at 0. It can be

defined as follows:

F1 = 2 · precision · recall
precision + recall

. (14)

When the number of outliers is not too large (i.e., OP ≤
40 %), iLTS could produce better performance (indicated

by higher precisions, recalls, and F1-scores) than LASSO.

When OP = 50%, i.e., half of the edges are reverted by

outliers, both of these two methods show a rapid decrease

of precision, recall, and F1 to about 0.5, which is the per-

formance of random guess. It is impossible to distinguish

the true signal from noise by any method when more than

half of the edges are perturbed, thus a phase transition can

be observed in the tables. The worse performance of iLTS

for high OPs is because the number of outliers estimated

by iLTS is smaller than the exact number of outliers when

the percentage of outliers is too high, which is further

confirmed by the precisions and recalls for OP = 50%.

When OP = 50%, the recalls are less than 0.5 (i.e., there

are more false negatives than true positives), and precisions

are greater than 0.5 (i.e., there are more true positives than

false positives). Therefore, the number of true positives and

false positives (the estimated number of outliers) is smaller

than the number of true positives and false negatives (the

exact number of outliers).

In addition, we compare the computing time required for

these two methods to finish all the 100 runs in Tables VII

and VIII. All computation is done using MATLAB R2010a

on a Lenovo laptop running Windows 7 with 2.40 GHz Intel

XU et al.: ILTS FOR OUTLIER DETECTION 9

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1: Reference videos in LIVE database.

Core i7-3630QM and 8 GB 1600 MHz DDR3 memory. It is

easy to see that on the simulated dataset, iLTS can achieve

up to about 190 times faster than LASSO. Take (SN = 1000,

OP = 15%) as an example, LASSO needs 690.31s for 100

runs, while iLTS only needs 3.65s, which is almost 190

times faster than LASSO. Note that, in most cases iLTS

could automatically determine the number of outliers exist

in the dataset without a priori knowledge.

B. Real-world Data

Two real-world datasets are adopted in this subsection.

The first dataset PC-VQA, which is collected by [8], con-

tains 38,400 paired comparisons of the LIVE dataset [69]

(Figure 1) from 209 random observers. An attractive prop-

erty of this dataset is that the paired comparison data is

complete and balanced. As LIVE includes 10 different

reference videos and 15 distorted versions of each reference

video (obtained using four different distortion processes:

MPEG-2 compression, H.264 compression, lossy transmis-

sion of H.264 compressed bitstreams through simulated

IP networks, and lossy transmission of H.264 compressed

bitstreams through simulated wireless networks), for a total

of 160 videos. A round of complete comparisons for this

video database requires 10×(
16
2

)
= 1200 comparisons, and

38,400 comparisons correspond to 32 complete rounds.

There is no ground-truth for outliers in these real-world

datasets, and we can not compute precision and recall
as in the simulated data to evaluate the performance of

outlier detection methods. Therefore, we inspect the outliers

returned and compare them with the whole data to see if

they are reasonably good outliers.

We take reference (a) in the PC-VQA dataset as an

illustrative example (other reference videos exhibit similar

results). We compare iLTS and LASSO again in the real-

world datasets. The number of outliers estimated by iLTS

is used for LASSO to choose regularization parameters and

select the outliers. Outliers detected by both methods are

shown in the paired comparison matrix in Table IX. The

paired comparison matrix is constructed as follows (Table X

is constructed in the same way). For each video pair {i, j},

let nij be the number of comparisons, among which aij
raters agree that the quality of i is better than j (aji carries

the opposite meaning). So aij + aji = nij if no tie occurs,

and in the PC-VQA dataset, nij ≡ 32 for all videos. The

order of the video ID in this Table is arranged from high

to low according to the global ranking score calculated

by the least squares method (2). The outliers picked out

by both methods are mainly distributed in the lower left

corner of this matrix, which implies that the outliers are

those preference orders with a large deviation from the

global ranking scores by L2. The total number of outliers

estimated by iLTS from this reference video is 761, so

the outlier percentage (OP) = 761/3840 = 18.65%. For

comparison, we also inspect the top 18.65% returned by

LASSO. It is easy to see that outliers returned by iLTS and

LASSO are almost the same except one pair (ID = 3 and

ID = 4). In the dataset, 15 raters agree that the quality of

ID = 3 is better than that of ID = 4, while 17 raters have

the opposite opinion. iLTS treats a3,4 = 15 as outliers,

while LASSO chooses the opposite direction (i.e., treats

a4,3 = 17 as outliers). LASSO tends to choose outliers

as the large deviation from the gradients of global ranking

scores while iLTS prefers to choose the minority in a paired

comparison data. Such a small difference only leads to a

local order change of nearby ranked items, ID = 3 and ID

= 4. Therefore the ranking algorithms are stable.

The global ranking scores of these three algorithms,

namely L2, LASSO, and iLTS, are shown in Table XI(a).

Removing the top 18.65% outliers in both LASSO and

iLTS changes the orders of some competitive videos. Both

LASSO and iLTS think ID = 12 has better performance

than ID = 3 and ID = 4. The scores of LASSO and iLTS

are quite similar except that the orders and scores of ID

= 3 and ID = 4 are exchanged, because LASSO and iLTS

choose different preference directions as outliers.

The effectiveness of iLTS is demonstrated on a complete

and balanced dataset, and we want to show the effective-

ness of iLTS on incomplete and imbalanced datasets. The

PC-IQA dataset is taken into consideration. This dataset

contains 15 reference images and 15 distorted versions of

each reference image, for a total of 240 images, which

come from two publicly available datasets: LIVE [69] and

IVC [70] (Figure 2). The distorted images in the LIVE

dataset [69] are obtained using five different distortion

10

TABLE IX: Paired comparison matrices of reference (a) in PC-VQA dataset. Red numbers are outliers obtained by both

iLTS and LASSO. Open blue circles are those obtained by LASSO but not iLTS, while filled blue circles are obtained

by iLTS but not LASSO.

Video ID 1 9 10 13 7 8 11 14 15 3 12 4 16 5 6 2

1 0 22 29 30 30 29 29 29 30 28 29 32 32 31 32 31

9 10 0 22 20 14 23 23 25 29 29 32 30 29 30 29 31

10 3 10 0 22 11 21 29 23 31 27 31 30 32 30 32 31

13 2 12 10 0 18 22 23 27 31 28 29 29 29 25 27 28

7 2 18 21 14 0 21 14 16 28 23 31 25 19 27 26 28

8 3 9 11 10 11 0 25 14 28 25 29 27 24 25 28 32

11 3 9 3 9 18 7 0 22 27 26 26 30 30 27 27 31

14 3 7 9 5 16 18 10 0 28 27 18 29 29 26 28 29

15 2 3 1 1 4 4 5 4 0 25 20 22 26 25 29 24

3 4 3 5 4 9 7 6 5 7 0 11 15 26 24 29 28

12 3 0 1 3 1 3 6 14 12 21 0 16 20 24 26 26

4 0 2 2 3 7 5 2 3 10 17 16 0 15 26 27 30

16 0 3 0 3 13 8 2 3 6 6 12 17 0 22 24 28

5 1 2 2 7 5 7 5 6 7 8 8 6 10 0 26 27

6 0 3 0 5 6 4 5 4 3 3 6 5 8 6 0 21

2 1 1 1 4 4 0 1 3 8 4 6 2 4 5 11 0

TABLE X: Paired comparison matrices of reference (c) in PC-IQA dataset. Red numbers, open blue circles, and filled

blue circles carry the same meanings with Table IX.

Image ID 1 8 16 2 3 11 6 12 9 14 5 13 7 10 15 4

1 0 13 9 16 19 12 15 13 14 14 14 17 16 17 16 16

8 6 0 8 7 8 5 13 7 7 8 19 8 15 9 12 15

16 4 0 0 9 11 9 8 15 3 18 16 17 12 7 21 18

2 5 5 6 0 8 9 10 11 7 14 13 14 14 13 14 15

3 3 4 6 7 0 6 11 9 10 16 12 15 14 14 18 13

11 4 6 3 5 6 0 5 3 5 6 21 5 11 7 12 18

6 0 2 7 4 2 7 0 12 12 7 22 15 17 13 13 17

12 3 4 1 4 4 3 1 0 8 15 18 12 9 8 13 17

9 1 3 3 5 1 3 1 0 0 5 18 10 14 9 7 16

14 0 0 1 0 0 3 7 2 1 0 14 15 10 8 17 19

5 0 0 0 0 0 0 0 0 0 1 0 14 19 19 15 17

13 0 0 0 0 0 0 0 0 0 0 6 0 5 7 17 16

7 0 0 0 0 0 0 0 0 0 0 0 5 0 8 9 18

10 0 0 0 0 0 0 0 0 0 0 0 2 2 0 3 11

15 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 11

4 0 0 0 0 0 0 0 0 0 0 0 1 0 6 6 0

XU et al.: ILTS FOR OUTLIER DETECTION 11

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o)

Fig. 2: Reference images in the LIVE and IVC datasets. (The first six images are from the LIVE dataset and the remaining

nine images are from the IVC dataset.)

processes: JPEG2000, JPEG, White Noise, Gaussian Blur,

and Fast Fading Rayleigh, while the distorted images in

the IVC dataset [70] are derived from four distortion

types — JPEG2000, JPEG, LAR Coding, and Blurring.

Totally, 186 observers, each of whom performs a varied

number of comparisons via Internet, provide 23,097 paired

comparisons for subjective IQA.

Table X shows the comparable experimental results of

iLTS vs. LASSO on a randomly selected reference image

(image (c) in Figure 2). Similar observations as above can

be made and we note that outliers distributed on this dataset

are much sparser than PC-VQA, shown by many zeros

in the lower left corner of the paired comparison matrix.

Outlier percentage (OP) returned by iLTS is 173/1655 =

10.45% in Table X, and it is easy to find that the detection

results of LASSO vs. iLTS are different on two pairs: 1)

ID = 6 and ID = 11; 2) ID = 10 and ID = 15. Similar

to the last experiment, iLTS prefers to choose the minority

in paired comparisons, i.e., the 5 in 11 � 6 and the 3

in 10 � 15, while LASSO selects outliers as the large

deviation from the gradients of global ranking scores even

when the votings are in majority. Such a difference leads to

a local order change of involved items which are adjacent

in ranking list, exhibiting stability in global rankings, as

shown in Table XI(b).

C. Discussion

As we have seen in the numerical experiments, iLTS

and LASSO mostly find the same outliers and when they

disagree, iLTS tends to choose the minority and LASSO

prefers to choose outliers as the large deviation from the

gradients of global ranking scores even when the votings

are in majority. When outliers consist of minority voting

as in simulated experiments, iLTS may perform better.

Besides, iLTS tents to choose fewer outliers to make sure

that there are no outliers in the remaining comparisons.

This can also be explained from the algorithm. We choose

a small initial estimation for the number of outliers, and

increase this estimation until there is no outliers in the

remaining comparisons. The parameter β2 > 1 is chosen to

be small so we will not overestimate the number of outliers

too much.

Finally, we would like to point out that subject-based

outlier detection can be a straightforward extension from

our proposed iLTS. From the detection results of iLTS, one

may evaluate the reliability of one participant based on all

the comparisons from the participant, and drop unreliable

participants.

V. CONCLUSIONS

In this paper, we have proposed a fast and adaptive

algorithm iLTS for outlier detection and robust ranking in

12

TABLE XI: Comparison of different rankings. Three rank-

ing methods are compared with the integer representing the

ranking position and the number in parentheses representing

the global ranking score returned by the corresponding

algorithm.

(a) Reference (a) in the PC-VQA dataset

Video ID L2 LASSO iLTS
1 1 (0.7930) 1 (0.9123) 1 (0.9129)

9 2 (0.5312) 2 (0.7537) 2 (0.7539)

10 3 (0.4805) 3 (0.6317) 3 (0.6322)

13 4 (0.3906) 4 (0.5522) 4 (0.5524)

7 5 (0.2852) 5 (0.4533) 5 (0.4537)

8 6 (0.2383) 6 (0.3159) 6 (0.3163)

11 7 (0.2148) 7 (0.2113) 7 (0.2120)

14 8 (0.1641) 8 (0.1099) 8 (0.1103)

15 9 (-0.1758) 9 (-0.1024) 9 (-0.1029)

3 10 (-0.2227) 11 (-0.3195) 12 (-0.3999)

12 11 (-0.2500) 10 (-0.2149) 10 (-0.2158)

4 12 (-0.2930) 12 (-0.4054) 11 (-0.3252)

16 13 (-0.3633) 13 (-0.5311) 13 (-0.5332)

5 14 (-0.4414) 14 (-0.6573) 14 (-0.6568)

6 15 (-0.6289) 15 (-0.8054) 15 (-0.8057)

2 16 (-0.7227) 16 (-0.9046) 16 (-0.9042)

(b) Reference (c) in the PC-IQA dataset

Image ID L2 LASSO iLTS
1 1 (0.7575) 1 (0.9015) 1 (0.9022)

8 2 (0.5670) 2 (0.7088) 2 (0.7129)

16 3 (0.5124) 3 (0.6472) 3 (0.6504)

2 4 (0.4642) 4 (0.5242) 4 (0.5248)

3 5 (0.4423) 5 (0.4119) 5 (0.4148)

11 6 (0.3277) 6 (0.2592) 7 (0.1763)

6 7 (0.3128) 7 (0.2515) 6 (0.3124)

12 8 (0.2423) 8 (0.1209) 8 (0.1261)

9 9 (0.1453) 9 (0.0043) 9 (0.0069)

14 10 (-0.0455) 10 (-0.1274) 10 (-0.1243)

5 11 (-0.3376) 11 (-0.3205) 11 (-0.3214)

13 12 (-0.4785) 12 (-0.4621) 12 (-0.4560)

7 13 (-0.5396) 13 (-0.5515) 13 (-0.5494)

10 14 (-0.7486) 14 (-0.7005) 15 (-0.7485)

15 15 (-0.7658) 15 (-0.7511) 14 (-0.7106)

4 16 (-0.8559) 16 (-0.9163) 16 (-0.9166)

QoE evaluation. It achieves up to 190 times faster than

LASSO in outlier detection. Moreover, this method can

automatically estimate the number of outliers and detect

them without any priori information about the number

of outliers existing in the dataset. The effectiveness and

efficiency of iLTS is demonstrated on both simulated exam-

ples and real-world applications. iLTS exhibits comparable

accuracy to LASSO in outlier detection. There are small

distinctions between them indicating that iLTS prefers to

choose minority voting data as outliers, while the LASSO

selects large deviations from the gradient of global ranking

score as outliers even when they are in majority voting. In

both cases, the global rankings obtained are stable. A future

direction is to understand under what kind of conditions

such an adaptive least trimmed squares algorithm works.

In summary, we expect that the proposed iLTS for

QoE evaluations will be a helpful tool for people in the

multimedia community exploiting crowdsourceable paired

comparison data for robust ranking.

REFERENCES

[1] R. Schatz, T. Hoßfeld, L. Janowski, and S. Egger, “From packets
to people: Quality of experience as new measurement challenge,” in
Data Traffic Monitoring and Analysis: From measurement, classifi-
cation and anomaly detection to Quality of experience. Springer’s
Computer Communications and Networks series, 2012.

[2] C.-C. Wu, K.-T. Chen, Y.-C. Chang, and C.-L. Lei, “Crowdsourcing
multimedia QoE evaluation: A trusted framework,” IEEE Transac-
tions on Multimedia, vol. 15, no. 5, pp. 1121–1137, 2013.

[3] Methods for subjective determination of transmission quality, ITU-R
Recommendation. Rec. ITU-T-P.800, 1996.

[4] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei, “A crowdsource-
able QoE evaluation framework for multimedia content.” ACM
Multimedia, 2009, pp. 491–500.

[5] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye., “Statistical ranking and
combinatorial Hodge theory,” Mathematical Programming, vol. 127,
no. 6, pp. 203–244, 2011.

[6] J. Howe, “The rise of crowdsourcing,” Wired Magazine, vol. 14,
no. 6, pp. 176–183, 2006.

[7] A. Eichhorn, P. Ni, and R. Eg, “Randomised pair comparison: an
economic and robust method for audiovisual quality assessment.”
International Workshop on Network and Operating Systems Support
for Digital Audio and Video, 2010, pp. 63–68.

[8] Q. Xu, T. Jiang, Y. Yao, Q. Huang, B. Yan, and W. Lin, “Random
partial paired comparison for subjective video quality assessment via
HodgeRank.” ACM Multimedia, 2011, pp. 393–402.

[9] Q. Xu, Q. Huang, T. Jiang, B. Yan, W. Lin, and Y. Yao, “HodgeRank
on random graphs for subjective video quality assessment,” IEEE
Transactions on Multimedia, vol. 14, no. 3, pp. 844–857, 2012.

[10] Q. Xu, Q. Huang, and Y. Yao, “Online crowdsourcing subjective
image quality assessment.” ACM Multimedia, 2012, pp. 359–368.

[11] Q. Xu, J. Xiong, Q. Huang, and Y. Yao, “Online HodgeRank
on random graphs for crowdsourceable QoE evaluation,” IEEE
Transactions on Multimedia, vol. 16, no. 2, pp. 373–386, 2014.

[12] ——, “Robust evaluation for quality of experience in crowdsourc-
ing,” in ACM Multimedia, 2013, pp. 43–52.

[13] Y. She and A. B. Owen, “Outlier detection using nonconvex pe-
nalized regression,” Journal of the American Statistical Association,
vol. 106, no. 494, pp. 626–639, 2011.

[14] W. Lin and C.-C. J. Kuo, “Perceptual visual quality metrics: A sur-
vey,” Journal of Visual Communication and Image Representation,
vol. 22, no. 4, pp. 297–312, 2011.

[15] O. Alonso, D. Rose, and B. Stewart, “Crowdsourcing for relevance
evaluation,” SIGIR Forum, vol. 42, no. 2, pp. 9–15, 2008.

[16] A. Kittur, E. Chi, and B. Suh, “Crowdsourcing user studies with
Mechanical Turk.” SIGCHI conference on Human factors in
computing systems, 2008, pp. 453–456.

[17] A. Sorokin and D. Forsyth, “Utility data annotation with Amazon
Mechanical Turk.” Computer Vision and Pattern Recognition
Workshops, June 2008, pp. 1–8.

[18] S. Nowak and S. Ruger, “How reliable are annotations via crowd-
sourcing: a study about inter-annotator agreement for multi-label
image annotation.” International conference on Multimedia infor-
mation retrieval, 2010, pp. 557–566.

[19] M. Soleymani, M. Caro, E. Schmidt, C. Sha, and Y. Yang, “1000
songs for emotional analysis of music.” ACM international work-
shop on Crowdsourcing for multimedia, 2013, pp. 1–6.

[20] G. Tavares, A. Mourao, and J. Magalhaes, “Crowdsourcing for
affective-interaction in computer games.” ACM international work-
shop on Crowdsourcing for multimedia, 2013, pp. 7–12.

[21] B. Gardlo, M. Ries, and T. Hoßfeld, “Impact of screening technique
on crowdsourcing qoe assessments.” International Conference
Radioelektronika, Special Session on Quality in multimedia systems,
2012.

XU et al.: ILTS FOR OUTLIER DETECTION 13

[22] C. Keimel, J. Habigt, and K. Diepold, “Challenges in crowd-based
video quality assessment,” in International Workshop on Quality of
Multimedia Experience, 2012.

[23] M. de Condorcet, “Éssai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix (essay on the application
of analysis to the probability of majority decisions),” Imprimerie
Royale, Paris, 1785.

[24] K. J. Arrow, Social Choice and Individual Values, 2nd Ed. Yale
University Press, New Haven, CT, 1963.

[25] L. Thurstone, “A law of comparative judgement,” Psychological
Review, vol. 34, pp. 278–286, 1927.

[26] T. L. Saaty, “A scaling method for priorities in hierarchical struc-
tures,” Journal of Mathematical Psychology, vol. 15, no. 3, pp. 234–
281, 1977.

[27] G. Noether, “Remarks about a paired comparison model,” Psychome-
trika, vol. 25, pp. 357–367, 1960.

[28] H. David, The method of paired comparisons, ser. 2nd Ed., Griffin’s
Statistical Monographs and Courses, 41. Oxford University Press,
New York, NY, 1988.

[29] S. X. Yu, “Angular embedding: from jarring intensity differences to
perceived luminance,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 2302–2309.

[30] ——, “Angular embedding: A robust quadratic criterion,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 1, pp. 158–173, 2012.

[31] W. Ma, J. M. Morel, S. Osher, and A. Chien, “An L1-based
variational model for retinex theory and its application to medical
images,” in Computer Vision Pattern Recognition, 2011, pp. 153–
160.

[32] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” in International Conference on World Wide Web,
1998, pp. 107–117.

[33] J. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[34] C. Cortes, M. Mohri, and A. Rastogi, “Magnitude-preserving ranking
algorithms,” vol. 24, 2007, pp. 169–176.

[35] A. Rajkumar and S. Agarwal, “A statistical convergence perspective
of algorithms for rank aggregation from pairwise data,” in Interna-
tional Conference on Machine Learning, 2014, pp. 118–126.

[36] R. T. Stefani, “Football and basketball predictions using least
squares,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 7, pp. 117–121, 1977.

[37] Y. Sismanis, “How I won the “chess ratings – Elo vs. the Rest of
the world” competition,” http://arxiv.org/abs/1012.4571v1, 2010.

[38] B. Osting, J. Darbon, and S. Osher, “Statistical ranking using the l1-
norm on graphs.” AIMS Journal on Inverse Problems and Imaging,
vol. 7, no. 3, pp. 907–926, 2013.

[39] N. Ailon, “An active learning algorithm for ranking from pairwise
preferences with an almost optimal query complexity,” Journal of
Machine Learning Research, vol. 13, pp. 137–164, 2012.

[40] K. G. Jamieson and R. D. Nowak, “Active ranking using pairwise
comparisons,” Annual Conference on Neural Information Processing
Systems, pp. 2240–2248, 2011.

[41] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, “Adapting
ranking SVM to document retrieval,” in ACM Special Interest Group
on Information Retrieval, 2006, pp. 186–193.

[42] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. Hullender, “Learning to rank using gradient descent,” in
International Conference on Machine Learning, 2005, pp. 89–96.

[43] C. J. C. Burges, R. Ragno, and Q. V. Le, “Learning to rank
with nonsmooth cost functions,” in Annual Conference on Neural
Information Processing Systems, 2006, pp. 193–200.

[44] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pair-
wise ranking aggregation in a crowdsourced setting,” in International
conference on Web search and data mining, 2013, pp. 193–202.

[45] J. Yi, R. Jin, S. Jain, and A. K. Jain, “Inferring users’ preferences
from crowdsourced pairwise comparisons: A matrix completion
approach,” in AAAI Conference on Human Computation and Crowd-
sourcing, 2013, pp. 207–215.

[46] S. Negahban, S. Oh, and D. Shah, “Iterative ranking from pair-
wise comparisons,” in Annual Conference on Neural Information
Processing Systems, 2012, pp. 2483–2491.

[47] K.-T. Chen, C.-J. Chang, C.-C. Wu, Y.-C. Chang, and C.-L. Lei,
“Quadrant of euphoria: a crowdsourcing platform for QoE assess-
ment,” Network, IEEE, vol. 24, no. 2, pp. 28–35, 2010.

[48] C. Keimel, J. Habigt, and K. Diepold, “Challenges in crowd-based
video quality assessment,” in International Workshop on Quality of
Multimedia Experience, 2012, pp. 13–18.

[49] A. N. Hirani, K. Kalyanaraman, and S. Watts, “Least squares ranking
on graphs,” arXiv:1011.1716v4, 2011.

[50] B. Osting, J. Darbon, and S. Osher, “Statistical ranking using the
l1-norm on graphs,” Inverse Problems & Imaging, vol. 7, no. 3,
2013.

[51] B. Osting, C. Brune, and S. Osher, “Enhanced statistical rankings
via targeted data collection,” in International Conference on Machine
Learning, 2013, pp. 489–497.

[52] O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo, “Flows
and decompositions of games: Harmonic and potential games,”
Mathematics of Operations Research, vol. 36, no. 3, pp. 474–503,
2011.

[53] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid
Mechanics, ser. Texts in Applied Mathematics. Springer, 1993.

[54] J. Yuan, G. Steidl, and C. Schnorr, “Convex Hodge decomposition
and regularization of image flows,” Journal of Mathematical Imaging
and Vision, vol. 33, no. 2, pp. 169–177, 2009.

[55] P. Erdos and A. Renyi, “On random graphs i,” Publicationes
Mathematicae-Debrecen, vol. 6, pp. 290–297, 1959.

[56] N. Wormald, “Models of random regular graphs.” In Surveys in
Combinatorics, 1999, pp. 239–298.

[57] A.-L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[58] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, no. 393, pp. 440–442, 1998.

[59] M. Penrose, Random Geometric Graphs (Oxford Studies in Proba-
bility). Oxford University Press, 2003.

[60] D. Hawkins, Identification of outliers. Springer, 1980, vol. 11.
[61] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, “Loci:

Fast outlier detection using the local correlation integral,” in IEEE
International Conference on Data Engineering, 2003, pp. 315–326.

[62] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold,
and P. Tran-Gia, “Best practices for QoE crowdtesting: QoE as-
sessment with crowdsourcing,” IEEE Transactions on Multimedia,
vol. 16, no. 2, pp. 541–558, 2014.

[63] P. J. Huber, Robust Statistics. New York: Wiley, 1981.
[64] M. Yan, “Restoration of images corrupted by impulse noise and

mixed gaussian impulse noise using blind inpainting,” SIAM Journal
on Imaging Sciences, vol. 6, no. 3, pp. 1227–1245, 2013.

[65] M. Yan, Y. Yang, and S. Osher, “Robust 1-bit compressive sensing
using adaptive outlier pursuit,” IEEE Transactions on Signal Pro-
cessing, vol. 60, no. 7, pp. 3868–3875, 2012.

[66] X. Zeng and M. A. T. Figueiredo, “Robust binary fused compressive
sensing using adaptive outlier pursuit,” CoRR, vol. abs/1402.5076,
2014.

[67] M. Yan, Y. Yang, and S. Osher, “Exact low-rank matrix completion
from sparsely corrupted entries via adaptive outlier pursuit,” Journal
of Scientific Computing, vol. 56, no. 3, pp. 433–449, 2013.

[68] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection. Wiley, 1987.

[69] “LIVE image & video quality assessment database.”
http://live.ece.utexas.edu/research/quality/,
2008.

[70] “Subjective quality assessment irccyn/ivc database.”
http://www2.irccyn.ec-nantes.fr/ivcdb/, 2005.

